axiome de Cantor-Dedekind

axiome de Cantor-Dedekind

axiome de Cantor-Dedekind Énoncé aux termes duquel si, sur une droite D, on reporte les points A1, A2, …, An, d'une part, les points B1, B2, …, Bn d'autre part, les abscisses des premiers formant une suite an non décroissante de nombres rationnels, celles des seconds une suite bn non croissante, la différence bnan restant positive et tendant vers zéro, les segments emboîtés [AnBn] ont un point commun unique M, auquel correspond suivant les cas un nombre rationnel ou un nombre irrationnel. ● axiome de Cantor-Dedekind (synonymes) Énoncé aux termes duquel si, sur une droite D...
Synonymes :
- axiome de continuité

Encyclopédie Universelle. 2012.

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Axiome de limitation de taille — En théorie des ensembles, plus précisément en théorie des classes, l axiome de limitation de taille a été proposé par John von Neumann dans le cadre de sa théorie des classes. Il formalise en partie le principe de limitation de taille (traduction …   Wikipédia en Français

  • Paradoxe de cantor — Le paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l argument a été découvert par Georg Cantor dans les années 1890 (on le trouve dans une lettre à David Hilbert datée de 1897)[1]. Il est… …   Wikipédia en Français

  • Paradoxe de Cantor — Le paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l argument a été découvert par Georg Cantor dans les années 1890 (on le trouve dans une lettre à David Hilbert datée de 1897)[1]. Il est… …   Wikipédia en Français

  • Theoreme de Cantor-Bernstein — Théorème de Cantor Bernstein Le théorème de Cantor Bernstein, également appelé théorème de Cantor Schröder Bernstein, est un théorème de la théorie des ensembles. Il est nommé en l honneur des mathématiciens Georg Cantor, Felix Bernstein et Ernst …   Wikipédia en Français

  • Théorème de Cantor-Schröder-Bernstein — Théorème de Cantor Bernstein Le théorème de Cantor Bernstein, également appelé théorème de Cantor Schröder Bernstein, est un théorème de la théorie des ensembles. Il est nommé en l honneur des mathématiciens Georg Cantor, Felix Bernstein et Ernst …   Wikipédia en Français

  • Théorème de cantor-bernstein — Le théorème de Cantor Bernstein, également appelé théorème de Cantor Schröder Bernstein, est un théorème de la théorie des ensembles. Il est nommé en l honneur des mathématiciens Georg Cantor, Felix Bernstein et Ernst Schröder. Cantor en donna… …   Wikipédia en Français

  • Théorème de Cantor-Bernstein — Pour les articles homonymes, voir Théorème de Bernstein. Le théorème de Cantor Bernstein, également appelé théorème de Cantor Schröder Bernstein, est un théorème de la théorie des ensembles. Il est nommé en l honneur des mathématiciens Georg… …   Wikipédia en Français

  • continuité — [ kɔ̃tinɥite ] n. f. • v. 1380; de continu ♦ Caractère de ce qui est continu. ⇒ constance, enchaînement, permanence, persistance. La continuité d une action. Absence de rupture. Principe de la continuité de l État. Assurer la continuité d une… …   Encyclopédie Universelle

  • Infini — Le symbole infini Le mot « infini » ( e, s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n a pas de limite en nombre ou en taille. Sommaire …   Wikipédia en Français

  • Dénombrabilité — Ensemble dénombrable En mathématiques, un ensemble est dit dénombrable, ou infini dénombrable, lorsque ses éléments peuvent être listés sans omission ni répétition dans une suite indexée par les entiers. Certains ensembles infinis, au contraire,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”